
Journal of Real-Time Image Processing
The final publication is available at Springer via http://dx.doi.org/10.1007/s11554-014-0436-8

Mark Howison · E. Wes Bethel

GPU-accelerated denoising of 3D magnetic resonance
images

Received: 20 January 2013 / Accepted: 29 May 2014

Abstract The raw computational power of GPU ac-
celerators enables fast denoising of 3D MR images us-
ing bilateral filtering, anisotropic diffusion, and non-local
means. In practice, applying these filtering operations
requires setting multiple parameters. This study was de-
signed to provide better guidance to practitioners for
choosing the most appropriate parameters by answering
two questions: What parameters yield the best denois-

M. Howison
Center for Computation and Visualization
Brown University
180 George Street, Providence, RI 02912, USA
E-mail: mhowison@brown.edu

M. Howison and E. Wes Bethel
Computational Research Division
Lawrence Berkeley National Laboratory
One Cyclotron Road, Berkeley, CA 94720, USA
E-mail: ewbethel@lbl.gov

Disclaimer. This document was prepared as an account of
work sponsored by the United States Government. While this
document is believed to contain correct information, neither
the United States Government nor any agency thereof, nor
the Regents of the University of California, nor any of their
employees, makes any warranty, express or implied, or as-
sumes any legal responsibility for the accuracy, completeness,
or usefulness of any information, apparatus, product, or pro-
cess disclosed, or represents that its use would not infringe
privately owned rights. Reference herein to any specific com-
mercial product, process, or service by its trade name, trade-
mark, manufacturer, or otherwise, does not necessarily con-
stitute or imply its endorsement, recommendation, or favor-
ing by the United States Government or any agency thereof,
or the Regents of the University of California. The views
and opinions of authors expressed herein do not necessarily
state or reflect those of the United States Government or any
agency thereof or the Regents of the University of California.
Copyright notice. This manuscript has been authored by
an author at Lawrence Berkeley National Laboratory under
Contract No. DE-AC02-05CH11231 with the U.S. Depart-
ment of Energy. The U.S. Government retains, and the pub-
lisher, by accepting the article for publication, acknowledges,
that the U.S. Government retains a non-exclusive, paid-up,
irrevocable, world-wide license to publish or reproduce the
published form of this manuscript, or allow others to do so,
for U.S. Government purposes.

ing results in practice? And what tuning is necessary
to achieve optimal performance on a modern GPU? To
answer the first question, we use two different metrics,
mean-squared error (MSE) and mean structural simi-
larity (MSSIM), to compare denoising quality against a
reference image. Surprisingly, the best improvement in
structural similarity with the bilateral filter is achieved
with a small stencil size that lies within the range of
real-time execution on an NVIDIA Tesla M2050 GPU.
Moreover, inappropriate choices for parameters, espe-
cially scaling parameters, can yield very poor denoising
performance. To answer the second question, we perform
an autotuning study to empirically determine optimal
memory tiling on the GPU. The variation in these results
suggest that such tuning is an essential step in achiev-
ing real-time performance. These results have important
implications for the real-time application of denoising to
MR images in clinical settings that require fast turn-
around times.

1 Introduction

Denoising is a important step in many image processing
pipelines for brain magnetic resonance imaging (MRI).
We studied three 3D filters – the bilateral, anisotropic
diffusion, and non-local means filters – that remove noise
and smooth features within MR images while preserving
edges. Our implementations of these stencil-based algo-
rithms use NVIDIA’s CUDA programming language to
take advantage of the high computational throughput of
GPU accelerators.

All three of these filters have tunable parameters, and
we performed parameter sweeps to identify optimal set-
tings both for runtime and noise reduction. To measure
noise reduction, we began with MR images from a simu-
lated brain database called BrainWeb (McConnel Brain
Imaging Center 1997) that contains both noiseless refer-
ence images and images with added noise. Then, we ran
our filtering on the noisy images and compared the re-
sults fo the noiseless images using two different metrics,

2

Original Noiseless Image Original Noisy Image (MSE=234.9) Best Denoised Image (MSE=154.0)

Fig. 1 Visual comparison of a 2D slice of noiseless and noisy (9%) BrainWeb images along side a denoising result from the
non-local means filter at W = 3, P = 1, and h = 0.1. The plots below the images show the variation in signal across a single
scan line, which is also shown in red in the images.

the mean squared error (MSE) and the mean structural
similarity (MSSIM). Our findings show a wide variaion
in both denoising and runtime performance, and that it
is important to tune both.

The tunable parameters can be divided into two groups:
those that affect runtime (e.g. stencil size) and those
that do not (e.g. scaling factors), which we will call run-
time parameters and smoothing parameters, respectively.
With current GPU technology, real-time execution is
possible for small stencil sizes, which should yield less
denoising. That is, we would expect larger stencil sizes
to increase runtime, but also to yield more noise reduc-
tion.

Yet, surprisingly, we will show that for the bilateral
filter, smaller stencil sizes achieive the best denoising.
Thus, we are able to, in practice, perform real-time 3D
denoising of MR images that would appear to require
too much computation, even on modern GPUs. Table 1
summarizes our test data and the best tuned runtimes
(including transfer time to and from GPU memory) for
each of the filters at their most effective smoothing pa-
rameters. Figure 1 shows the original noisy data set, and
the resulting denoised image using the non-local means
filter.

One potential application of our results is the rapid
turn-around of MRI denoising over a range of filtering
parameters. For instance, following an MRI scan, practi-
tioners may wish to quickly perform a sweep of denoising
filters at different parameters so that they can visually
compare them and select the best one. Similarly, real-

time denoising could support an interactive GUI for ex-
ploring the parameter space.

2 Background

2.1 Denoising

2.1.1 Bilateral Filtering

Bilateral filtering, as originally described by Tomasi and
Manduchi (1998), performs anisotropic image smoothing
using a low-cost, non-iterative formulation. It computes
the influence of nearby pixels in a way that removes noise
locally and that does not have the undesirable prop-
erty of smoothing edge features. This formulation uses a
straightforward, tunable estimate for region boundaries:
a Gaussian-weighted difference in the range of the sig-
nal, or photometric space. Wherever a sharp edge exists,
there will be a large difference in signal that will corre-
spond to a small Gaussian weight, thereby attenuating
the smoothing. The range estimate is combined with a
traditional Gaussian-weighted distance function in the
spatial domain to lessen the contribution of more dis-
tant pixels.

For a 3D volume V, the output of the bilateral filter
at each voxel Vi is the weighted average of the voxels at
nearby locations j in the neighborhood Ni with radius R
(e.g., for R = 1 the 3× 3× 3 cube centered at Vi). The
influence of each voxel in Ni is computed as the product

3

Table 1 Summary of Test Data and Best Tuned Runtimes

Scanner Modality Dimensions M. Voxels
Bilateral Anisotropic Non-Local Means

Filter R=2 Diffusion N=20 (W,P)=(3,2)

7-T T2 (TRA) (480, 480, 36) 8.3 84 ms 495 ms 4,892 ms
3-T MPRAGE (256, 256, 200) 13.1 147 ms 803 ms 8,240 ms
7-T T2 (2D) (1024, 1024, 20) 21.0 183 ms 1,236 ms 12,108 ms
7-T T1 (352, 352, 249) 30.9 324 ms 1,851 ms 18,466 ms
3-T FLAIR (576, 576, 300) 99.5 1,132 ms 6,019 ms 58,188 ms
Note: all runtimes include transfer times to and from GPU memory.

of two Gaussian kernels, one in the spatial domain (Gσd
)

and one in the photometric range (Gσr). The Gaussian
kernels attenuate the influence of nearby points such that
those nearby in geometric or signal space have greater
influence, while those further away in geometric or signal
space have less influence. The voxels in the filtered image
V′ are computed as:

V′i =
1

wi

∑
j∈Ni

Gσd
(‖i− j‖)Gσr

(|Vi −Vj |)Vj (1)

where wi is a normalization factor that sums all of the
Gaussian weights,

wi =
∑
j∈Ni

Gσd
(‖i− j‖)Gσr

(|Vi −Vj |). (2)

While it is possible to precompute the weights in wp
contributed by Gσd

, the contributions from Gσr are not
known a priori as they depend on the photometric values
of a particular image.

In earlier work, we extended the original Tomasi bi-
lateral filtering formulation for use on 3D volumetric
data and compared its scalability and performance on
shared- and distributed-memory platforms using several
different parallel programming models and execution frame-
works (Bethel 2009).

The bilateral filter has also been extended by Hamarneh
and Hradsky (2007) to smooth diffusion tensor MRI data
by replacing the notion of photometric similarity with a
metric suitable for measuring the dissimilarity of diffu-
sion tensors.

2.1.2 Anisotropic Diffusion

Anisotropic diffusion is a process similar to isotropic
diffusion, or Gaussian smoothing, but includes an ad-
ditional “conductance” function to regulate how much
diffusion takes place at different locations in the image.
This is useful for edge-detection and for edge-preserving
denoising of images because the conductance function
can be chosen to limit the diffusion near sudden changes
in value (i.e. large gradients) and these areas typically
correspond to edges.

In its continuous and most general form, anisotropic
diffusion solves the following PDE that is similar to the
heat equation, but with the addition of the conductance
function g:

∂u

∂t
= ∇ · (g(|∇u|)∇u). (3)

Several anisotropic filters for 2D edge-preserving de-
noising have been proposed over the years, starting with
Perona and Malik (1990). Extending their formulation
to a 3D volume V , we can approximate the solution of
the PDE at each voxel as:

Vt+1
i = Vt

i +∆t
∑
j∈Ni

g(Vt
j −Vt

i)(V
t
j −Vt

i) (4)

where ∆t is the timestep and Ni is the neighborhood of 6
points that are ±1 lattice point from i in each direction.

Gerig et al (1992) suggested enhancing this approx-
imation by sampling from a larger neighborhood that
includes all of the diagonal lattice directions. This is a
26-point stencil in 3D, and therefore incurs more compu-
tation. It is a similar formulation to Perona and Malik’s,
but adds a normalization factor lj that corrects for the
length of the diagonal between voxels Vi and Vj :

Vt+1
i = Vt

i +∆t
∑
j∈Ni

g(Vt
j −Vt

i)

lj
(Vt

j −Vt
i). (5)

The normalization factor also accomodates datasets
with non-uniform elements, such as in 3D MR images
where the resolution is lower in the z-dimension. How-
ever, some implementors warn that images acquired with
excessively skewed ratios between resolutions, such as
1 : 2 or greater, contain insufficient information to be
used successfully in biomedical settings (see Ibanez et al
(2003) pg. 242 for a discussion).

Weickert and Benhamouda (1997) described a filter
that precomputes the gradient approximation by central
differences in a buffer G, then calculates:

Vt+1
i = Vt

i +∆t
∑
j∈Ni

(Gtj −Gti)
lj

(Vt
j −Vt

i). (6)

In an earlier study (Howison 2010), we implemented
and tested all three of these discrete forms along with
four conductance functions, using the same test data as
in the present study. We found that the best noise reduc-
tion was achieved by the Weickert stencil in combination
with the second conductance function described by Per-
ona and Malik (1990), namely

g(t) =
1

1 + (t/κ)2
(7)

where κ is a scaling factor. Therefore, we tested only this
combination in the present study.

4

2.1.3 Non-Local Means

Like the bilateral filter and anisotropic diffusion, non-
local means denoises an image by averaging values within
the image, and was first introduced by Buades et al
(2005). Whereas the bilateral filter and anistropic dif-
fusion consider only a local neighborhood around each
voxel, non-local means incorporates additional “non-local”
information by computing the weights for the voxels in
the local neighborhood, or “window,” as the average over
a second neighborhood, or “patch.” This scheme can be
expressed as:

V′i =
1

Zi

∑
j∈Ni

w(i, j)Vi (8)

whereNi is the window neighborhood of radiusW around
the voxel Vi. The w(i, j) are weights that are calculated
for each voxel Vj in the window by averaging over a
patch neighborhood ∆ of radius P centered at Vj :

w(i, j) =
∑
δ∈∆

Gh (|Vi+δ −Vj+δ|) (9)

where Gh is a Gaussian kernel with standard deviation
h. The normalization factor Zi for voxel Vi is the sum
of the voxel’s window weights:

Zi =
∑
j∈Ni

w(i, j). (10)

Non-local means is by far the most computationally
complex denoising approach of the three we tested in
this study. The asymptotic runtime of a stencil calcula-
tion grows as the product of the size of its nested loops.
Therefore, the asymptotic runtime for non-local means
is O(|V|W 3P 3), where |V| is number of voxels in the 3D
volume and W and P are the window and patch sizes.
In contrast, the bilateral filter’s asymptotic runtime is
O(|V|R3) for the radius R, and is therefore faster by a
cubic factor. The asymptotic runtime for anisotropic dif-
fusion, O(|V|N), is linear in the number of iterations N ,
and the least complex of the three.

Several studies have addressed the practical issues of
using non-local means on both 2D and 3D data that arise
because of its computational complexity. Mahmoudi and
Sapiro (2005) applied a filtering technique that precalcu-
lates a classification of all the neighborhoods by hashing
them by their average gray values and gradient orienta-
tions. In practice, this led to a ≈ 10× speed-up for 2D
images.

Coupe et al (2008) extended Mahmoudi and Sapiro
(2005)’s filtering technique to 3D MR images and com-
bined it with an automated selection of the smoothing
parameter h, a blocked approximation of the non-local
means stencil, and threaded parallelism to reduce run-
times. However, the fastest runtime they report for the
same dataset used in this study is 63s, which is far from
real-time.

Darbon et al (2008) described an optimized algorithm
for non-local means of 2D images, for applications in
electron cryomicroscopy. By precomputing the window
weights, this algorithm reduces the asymtotic runtime
for 2D images from O(|V|W 2P 2) to O(|V|W 2). That
is, it is able to calculate the weights in constant time,
independent of the patch size P , and is therefore a factor
of O(P 2) faster. While this optimization leads to real-
time runtimes in a threaded CPU implementation, these
are only for small image sizes with an order of magnitude
fewer pixels than the number of voxels in our test data.

2.2 GPU Computing

A GPU implementation of bilateral filtering appeared in
Chen et al (2007). Using a combination of vertex and
fragments shaders, it performs filtering on a data struc-
ture called a “bilateral grid” that contains a reduced-size
approximation of the original data, thereby achieving
good performance and memory utilization. For a two-
dimensional image, the three-dimensional bilateral grid
contains two spatial dimensions that correspond to pixel
location, and the third dimension corresponds to pixel
range information, typically pixel intensity. The authors
implement bilateral filtering, along with several other
edge-aware algorithms, on the GPU using a combina-
tion of vertex and fragment shaders. Because the bilat-
eral grid enables aggressive downsampling of the source
image, they are able to achieve high performance using
relatively small memory footprints on the GPU. In con-
trast, our work is a direct implementation in CUDA of
bilateral filtering in 3D, rather than an approximation,
which is more appropriate for clinical medical imaging
applications.

Stone et al (2008) presented results from optimizing
a MRI reconstruction algorithm on an NVIDIA Quadro
FX 5600 GPU. They compute anatomically constrained
reconstructions of non-cartesian MRI data. Their CUDA-
based algorithm performs a least-squares minimization
using conjugate gradient iterations along with FFT, in-
verse FFT, BLAS and sparse BLAS operations. They ex-
perimented with a number of optimizations: register al-
location, coalesced memory access, use of constant mem-
ory, fast math operations, and finally exhaustive search
for optimal tiling, number of threads per block and loop
unrolling factors. They reported a speedup of ≈ 13×
over a CPU implementation for a 1283 dataset. While
we use similar GPU optimizations, we use a different
stencil-based algorithm with a different data access pat-
tern. In an MR imaging pipeline, denoising could be used
as a complementary post-processing technique after the
data has been acquired and processed using their non-
cartesian acquisition method.

Zheng et al (2011) showed that pre-fetching blocks
of memory on the GPU accelerates both the bilateral
filter and non-local means for 2D images. Their reported

5

speed-ups were as high as 1.5× for the bilateral filter
and 4.8× for non-local means. However, they did not
conduct a systematic evaluation of block sizes as we do
in this study, nor did they consider 3D denoising.

Eklund et al (2011) used GPUs to accelerate true 4D
denoising of time-series 3D computed tomography (CT)
data sets. Because such data are collected at low dosages,
the resulting images are noisy. True 4D denoising applies
the denoising filter in both the 3D spatial and 1D tempo-
ral domain to improve the denoising results, since some
reconstruction artifacts vary with time. However, moving
from 3D to 4D images increases computational complex-
ity, and their CPU implementation takes several days to
perform adaptive filtering, or 50 minutes when using an
FFT-based filter. With GPU acceleration, the runtime
can be decreased to 25 minutes and 8 minutes, respec-
tiley. While this is far from real-time, the 4D data sets
they process are two orders-of-magnitude larger than our
3D MR images.

2.3 Autotuning

Autotuning is a methodology for finding the combina-
tions of tunable algorithmic parameters that result in the
best performance of an algorithm (or implementation) on
a particular platform and particular problem configura-
tion. This approach has been used with success to op-
timize performance of stencil-based codes on multi-core
CPUs and many-core GPUs (Datta et al 2009; Williams
et al 2010; Hollingsworth and Tiwari 2010; Kamil et al
2010; Magni et al 2013). Because it uses empirical data,
autotuning can accommodate a large diversity of par-
allel computing architectures, along with their complex
and rapidly changing performance characteristics. Alter-
nately, some recent research, such as that by de la Cruz
and Araya-Polo (2011), focuses on deriving a predictive
performance model for an 3D stencil computation code,
which has a uniform and predictable memory access pat-
tern.

Autotuning assumes that all possible tunable configu-
rations of an algorithm can be enumerated and tested for
a given problem size. Since the number of permutations
can be quite large, search strategies have emerged to
avoid expensive exhaustive searches. For example, Ryoo
et al (2008) presented a set of performance metrics to
estimate the performance of a given optimization config-
uration for CUDA-based code running on a GPU. They
computed two metrics, efficiency and utilization, by ex-
amining developer-readable assembler and GPU resource
utilization maps produced by the CUDA compiler. The
basic idea is to estimate values for each of these metrics
by examining resource utilization maps. Then, to avoid
an exhaustive search of the optimization space, they es-
timated the relative performance change by altering pa-
rameters that contribute to both metrics. They pruned
the size of the search space by examining only those con-
figurations that have only high levels in both metrics.

Other approaches to reducing the search parameter
space include techniques like genetic algorithms (Garcia
et al 2013), simulated annealing, or even a simple random
search, which has been shown to be surprisingly effective
in studies of dense computational codes on CPUs (Sey-
mour et al 2008). The savings can be dramatic: a study
by Ganapathi et al (2009) that used machine learning
techniques to reduce a parameter search space yielded
a speed-up of 2000× over the full search, while achiev-
ing tuning results comparable to a human expert. Our
search space is small enough that we do not explore these
search space optimizations in this study, but they may
be worthwhile to employ in a production system based
on our findings.

3 Methods

3.1 Software Implementation

Our GPU implementations are written in the highly-
threaded, data-parallel CUDA language (NVIDIA Cor-
poration 2012), which enables access to GPU architec-
tural resources via a set of extensions to C. We imple-
mented a simple memory tiling scheme originally de-
scribed by Rivera and Tseng (2000) to accelerate 3D
stencil computations by preloading a block of neighbor-
ing voxels into a GPU’s shared memory. This reduces the
number of redundant memory loads among neighboring
voxels, especially at larger stencil radii, where there is
more opportunity for cache reuse.

We also implemented utility routines to transfer 3D
datasets to and from CUDA global memory while main-
taining the appropriate padding required by the sten-
cil at boundary locations. Finally, we padded out the
dataset in the fastest moving dimension to a multiple of
the CUDA “warp” size of 32, which is the number of
threads that are executed simultaneously on each of the
GPU’s multi-processors.

We used version 5.0.35 of the CUDA compiler and
runtime and version 310.32 of the NVIDIA driver for
Linux. ECC support was enabled. During compilation,
we targeted CUDA “compute capability” 2.0 (NVIDIA
Corporation 2012) to take advantage of additional opti-
mizations available on the Fermi-series architecture.

Our implementation is open-source and available from
https://bitbucket.org/berkeleylab/crd-gd3d.

3.2 Test Platform and Data

We conducted our tests on the Oscar cluster at the Brown
University Center for Computation and Visualization.
Each IBM iDataPlex node in the cluster has a dual
2.5 GHz Intel 5630 Nehalem processors and 24 GB of
RAM. The GPU accelerator is a NVIDIA Fermi M2050,
a many-core GPU with 448 “CUDA cores” grouped as

6

14 “multiprocessors” (NVIDIA Corporation 2012) shar-
ing 3 GB of GDDR5 memory. The M2050 is installed as
a PCI-E x16v2 add-on card.

The BrainWeb (McConnel Brain Imaging Center 1997;
Cocosco et al 1997; Kwan et al 1999) database provides
reference MR images with corresponding noisy images
that have been artificially generated using a mathemat-
ical model of real-world noise. From this collection, we
chose 180 images spanning two anatomical models (nor-
mal vs. multiple sclerosis lesion), three modalities (T1,
T2, PD), two slice thicknesses (1mm, 9mm), five noise
levels (1%, 3%, 5%, 7%, 9%), and three levels of intensity
non-uniformity (0%, 20%, 40%). Each 1mm thickness im-
age has 181× 217× 181 voxels, and each 9mm thickness
image has 181× 217× 20 voxels.

Because the size of the largest BrainWeb image (only
7.1 million voxels) may not be representative of clinical
images obtained with modern MR imaging technologies,
we have included several larger images from the Multi-
Modal MRI Reproducibility Resource (Landman et al
2011). These images were downloaded from the BIRN
Data Repository and come from several modalities, as
summarized in Table 1.

3.3 Metrics for Evaluating Denoising Quality

Using the noiseless BrainWeb reference images as a base-
line, we can calculate metrics to compare the original and
denoised image, including the mean-squared error (MSE)
and the mean structural similarity (MSSIM) (Wang et al
2004)). For a 3D volume V with |V| voxels, we calcu-
lated MSE as:

1

|V|

|V|∑
i=0

|V′i −Vi|
2

(11)

where V′ is the filtered volume and V is the noiseless
reference.

This methodology of measuring MSE against the Brain-
Web reference data has been used previosly in the lit-
erature on MR image denoising. Indeed, the intent of
the BrainWeb authors was to provide a reference data
set that could be controllably degraded to enable quan-
titative evaluation of MR image processing techniques.
Coupe et al (2008)’s study of approximate non-local means
for 3D MR images performs parameter sweeps on the
BrainWeb data, using MSE as their metric for compari-
son. In a similar study, Manjón et al (2008) applied a 2D
non-local means implementation to the BrainWeb data
and used MSE to determine optimal parameters. The
key difference between these studies and ours is that we
are considering the exact 3D non-local means solution
and are also tuning for optimal runtime parameters, in
order to achieve real-time performance.

The mean structural similarity (MSSIM) is a more
sophisticated metric that is based on known properties
of visual perception. It aims to more accurately quantify

how different two images appear to a human observer
and has been validated against real subjective ratings of
image similarity. We have implemented MSSIM as de-
scribed by Wang et al (2004) in their Equations 13–17.
Briefly, we calculate the SSIM around each voxel within
a neighborhood of diameter 11 weighted by a Gaussian
filter w with standard deviation 1.5:

µx =

113∑
i=1

wixi (12)

σx =

 113∑
i=1

wi(xi − µx)2

 1
2

(13)

σxy =

113∑
i=1

wi(xi − µx)(yi − µy) (14)

SSIM(x,y) =
2µxµy + C1)(2σxy + C2)

(µ2
x + µ2

y + C1)(σ2
x + σ2

y + C2)
(15)

where xj and yj are the neighborhoods around the voxels
Vj and V′j respectfully. We used the values C1 = (0.01)2

and C2 = (0.03)2, as suggested by Wang et al (2004).
Then, MSSIM is the average of these SSIM values across
all voxels in the volume:

MSSIM(V,V′) =
1

|V|

|V|∑
j=1

SSIM(xj ,yj). (16)

3.4 Filter Parameters

Each of our filters has several tunable parameters that
we divide into two groups: those that affect runtime, or
runtime parameters, and those that do not, or smoothing
parameters. We conducted a parameter sweep study to
find the combinations of both runtime and smoothing
parameters that yielded the best denoising quality.

The runtime parameters for the bilateral and non-
local means filters are the spatial supports for the stencil:
the half-radius

R ∈ (1, 2, 3, 5, 7)

for the bilateral filter and the window/patch sizes

(W,P) ∈ ((1, 1), (2, 1), (3, 1), (3, 2), (5, 3))

for non-local means. For anisotropic smoothing, the run-
time parameter is the number of iterations

N ∈ (1, 5, 10, 20, 50).

The smoothing parameters for the bilateral filter are
the standard deviation

σd ∈ (0.25, 0.5, 1, 2, 3, 4, 8, 16)

in the spatial domain and the standard deviation

σr ∈ (2, 4, 8, 16, 32, 64)

7

−1 0 1 2 3 4 5 6 7 8
∆MSE

−0.5

0.0

0.5

1.0

1.5

2.0

2.5

∆
M

S
S
IM

Bilateral Filter - R parameter
R=1

R=2

R=3

R=7

−1 0 1 2 3 4 5 6 7 8
∆MSE

−0.5

0.0

0.5

1.0

1.5

2.0

2.5

∆
M

S
S
IM

Bilateral Filter - sd parameter
sd=2.0

sd=3.0

sd=4.0

sd=8.0

sd=16.0

−1 0 1 2 3 4 5 6 7 8
∆MSE

−0.5

0.0

0.5

1.0

1.5

2.0

2.5

∆
M

S
S
IM

Bilateral Filter - sr parameter
sr=4.0

sr=8.0

sr=16.0

sr=32.0

sr=64.0

Fig. 2 The relative change in MSSIM and MSE after denoising with the bilateral filter over a range of standard deviations
σd and σr and filter radii R. For each of the 180 BrainWeb images, the parameter configuration exhibiting the best increase
in MSSIM is plotted against its correspoding change in MSE.

8

in the image range. For anisotropic smoothing, they are
the size of discrete timesteps

∆t ∈ (1/128, 1/64, 1/32, 1/16, 1/8, 1/4)

and the scaling factor

κ ∈ (10−5, 10−4, 10−3, 10−2, 10−1, 1)

in the conductance function. For non-local means, there
is a single scaling factor

h ∈ (3.2, 1.6, 0.8, 0.4, 0.2, 0.1, 0.05, 0.025).

We also conducted an autotuning study to determine
the optimal memory tiling across each filter’s runtime pa-
rameters. Our 2D memory tiling optimization is highly
sensitive to the dimensions of the CUDA thread blocks:
each thread block loads a cache block of the same di-
mension (plus appropriate padding for the stencil calcu-
lation) into local cache. For the purposes of this study,
we explored all combinations of power-of-two dimensions

X ∈ (1, 2, 4, 8, 16, 32, 64, 128, 256, 512),

Y ∈ (1, 2, 4, 8, 16, 32, 64, 128, 256, 512)

for the thread blocks to get a thorough sense of the pa-
rameter space. We excluded (X,Y) pairs with fewer than
32 elements (too small to fill a warp of CUDA threads)
and which would require more than 48KB of memory
(larger than amount of local cache). In a production sys-
tem, however, it may be sufficient to search a smaller
parameter space using techniques like those discussed in
Section 2.3.

4 Results

4.1 Denoising Quality

For each of the 180 BrainWeb images, we performed a
sweep of 240 parameters configurations for the bilateral
filter, 180 for anisotropic diffusion, and 40 for non-local
means, as detailed in Section 3.4. Because the images
have varying levels of added noise, we calculated the rel-
ative change of the MSE and MSSIM between the noisy
image V′ and the denoised image V′′, as

∆MSE(V′,V′′) =
MSE(V′′,V)−MSE(V′,V)

MSE(V′,V)
(17)

where V is the corresponding noiseless image (and sim-
ilarly for ∆MSSIM). For each image, we identified the
configuration that maximized ∆MSSIM, i.e. yielded the
best improvement in structural similarity. Figures 2, 3
and 4 show this maximal value for each image, plotted
against the corresponded value of ∆MSE.

Many of the best configurations for a given BrainWeb
image actually increased the MSE of the denoised image
relative to the noisy image. These configurations are seen
as the positive relative change in MSE in Figures 2, 3 and

4. Yet, all of the best configurations improved structural
similarity regardless of their effect on MSE, and in gen-
eral there was poor correlation between these two error
metrics. In contrast to these best configurations, many of
the hundreds of other configurations that are not shown
in the figures fared poorly, causing decreases in struc-
tural similarity and in some cases order-of-magnitude in-
creases in MSE. This variation demonstrates the need to
carefully choose appropriate parameters for these filters.

Surprisingly, the bilateral filter yielded the best im-
provement in structural similarity for most of the Brain-
Web images at a stencil size of only R = 2. In con-
trast, anisotropic diffusion and non-local means achieved
the best improvement in structural similarity at rela-
tively greater iterations (N = 20) or larger stencil size
((W,P) = (3, 2)). All filters, however, achieved similar
improvements in structural similarity, peaking around
2.5×.

4.2 Runtime

We chose the runtime parameters that exhibited the max-
imal ∆SSIM for further analysis: R = 2, N = 20, and
(W,P) = (3, 2). In Figure 5, we show an autotuning
study of cache dimensions that varies the size of the in-
put data (across the five MMRR test images) to address
the question of whether this autotuning strategy scales
to larger images. The best runtime scaled linearly with
image size, except for a slight super-linear speed-up be-
tween the second and third image for the bilateral filter.
This is likely because the Z-dimension changes so dras-
tically between those two images, and memory access is
slowest in the Z direction.

The spread of the scatter points for each image in
Figure 5 shows the variance in runtime between best and
worst performing cache dimensions. Autotuning yielded
significant speed-ups over the worst-case performance,
as the overall variation in runtime across all the tested
dimensions varied by as much 4.8× for bilateral filter-
ing, 3.4× for anisotropic diffusion and 4.5× for non-local
means. If we define real-time execution as within 1/8
of a second, then the bilateral filter at R = 2 achieved
real-time execution for the two smallest MMRR images.

One disadvantage of using a GPU accelerater is the
cost of transferring data between main memory on the
host system and the GPU’s memory. This takes place
over the PCI Express x16 Gen2 bus on our test system,
which has a theoretical bandwidth of 8GB/s, a factor
of 18.5× less than the theoretical memory bandwidth of
the onboard GPU memory for the M2050 (148GB/s).
We measured the median time across all of our auto-
tuning tests to copy the MMRR datasets to and from
GPU memory as 4-byte float values (see Table 2). For
the largest dataset, FLAIR, real-time performance is not
possible because the transfer alone takes more than 125ms.

9

−0.4 −0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
∆MSE

−0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

∆
M

S
S
IM

Anisotropic Diffusion - N parameter
N=5

N=10

N=20

N=50

−0.4 −0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
∆MSE

−0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

∆
M

S
S
IM

Anisotropic Diffusion - dt parameter
dt=0.0078125

dt=0.015625

dt=0.03125

dt=0.0625

dt=0.125

−0.4 −0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
∆MSE

−0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

∆
M

S
S
IM

Anisotropic Diffusion - k parameter
k=0.01

k=0.1

Fig. 3 The relative change in MSSIM and MSE after denoising with the 26-point anisotropic diffusion filter with PM2
conductance function over a range of iterations N , conductance parameters κ, and time steps dt. For each of the 180
BrainWeb images, the parameter configuration exhibiting the best increase in MSSIM is plotted against its correspoding
change in MSE.

10

Table 2 Median Host/GPU Transfer Time and Bandwidth

Dataset M. Voxels Time To Bandwidth To Time From Bandwidth From

T2/TRA 8.3 8 ms 4039 MB/s 8 ms 3811 MB/s
MPRAGE 13.1 13 ms 4026 MB/s 13 ms 3823 MB/s
T2/2D 21.0 20 ms 4048 MB/s 21 ms 3868 MB/s
T1 30.9 30 ms 4075 MB/s 32 ms 3859 MB/s
FLAIR 99.5 130 ms 3057 MB/s 129 ms 3085 MB/s

−1.0 −0.5 0.0 0.5 1.0 1.5 2.0
∆MSE

−0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

∆
M

S
S
IM

Non-Local Means - W-P parameter
W-P=1-1

W-P=2-1

W-P=3-1

W-P=3-2

W-P=5-3

−1.0 −0.5 0.0 0.5 1.0 1.5 2.0
∆MSE

−0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

∆
M

S
S
IM

Non-Local Means - h parameter
h=0.025

h=0.05

h=0.1

h=0.2

h=0.4

h=0.8

h=1.6

h=3.2

Fig. 4 The relative change in MSSIM and MSE after denoising with the non-local means filter over a range of window sizes
W , patch sizes P , and scaling parameters h. For each of the 180 BrainWeb images, the parameter configuration exhibiting
the best increase in MSSIM is plotted against its correspoding change in MSE.

5 Conclusions and Future Work

Our analysis of noise reduction for these three denoising
filters, as measured by MSE and structural similarity,
suggest that it is easy to choose parameters that either
oversmooth or provide diminishing returns for their cost
in runtime. The best denoising achieved by the bilateral
filter was for parameter combinations that also achieved

real-time execution on an NVIDIA M2050 GPU for the
smaller MMRR test images.

Three promising directions for future work could help
achieve real-time execution for the larger MMRR images
and with the best anisotropic diffusion and non-local
means configurations. First, NVIDIA is now shipping the
Tesla K10 (Kepler architecture). It has a memory band-
width of 320GB/s and supports 4.58 teraflops of single
precision arithmetic. These are 2.2× and 4.5× greater

11

30.9
8.3

21.0
13.1

99.5

M. Voxels

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

R
u
n
ti
m
e
 (
s)

Bilateral Filter R=2
T1

T2/TRA

T2/2D

MPRAGE

FLAIR

30.9
8.3

21.0
13.1

99.5

M. Voxels

0

5

10

15

20

R
u
n
ti
m
e
 (
s)

Anisotropic Diffusion N=20
T1

T2/TRA

T2/2D

MPRAGE

FLAIR

30.9
8.3

21.0
13.1

99.5

M. Voxels

0

50

100

150

200

250

300

R
u

n
ti

m
e

 (
s)

Non-Local Means (W,P)=(3,2)
T1

T2/TRA

T2/2D

MPRAGE

FLAIR

Fig. 5 Scatter plots summarize the distribution of runtimes (including transfer times) for the memory block configurations
we autotuned across. Runtimes increased linearly with the number of voxels in the MMRR images, except for a slight super-
linear increase for the bilateral filter. A few configurations for the bilateral filter achieve real-time results, indicated by the
dotted line at y = 0.125.

than the bandwidth and peak arithmetic of the M2050,
respectively. Therefore, we would expect at least a 2×
reduction in runtime simply by moving to this newer ar-
chitecture.

Second, we could extend the optimized algorithm for
non-local means described by Darbon et al (2008) to 3D
images and implement it for GPUs. So far, it has only
been implemented and tested on CPUs and it requires
storing several temporary buffers during the precompu-
tation, which may overrun the relatively small 48KB lo-
cal cache on the M2050. Even the Tesla K10 only has
64KB of local cache. While the factor of O(P 3) savings
becomes significant for large values of P (for instance,
Darbon et al (2008) use (W,P) = (7, 3) on a 2D im-
age), our parameter sweep suggests that non-local means
works best around (W,P) = (3, 2), and so the savings
may not be significant.

A third solution would be to use domain decomposi-
tion to parallelize the denoising computation across mul-
tiple GPUs, using for instance an MPI+CUDA frame-
work. Based on a previous study we conducted (Bethel
2009), we expect this would scale close to linearly for a
small number of MPI tasks, but this speed-up would be
offset by the added latency of performing the reduction
necesssary to output the final denoised image. As the size
of data sets that can be generated from MR instruments
increases, we suspect that this approach – the use of do-
main decomposition and distributed-memory parallelism
– will be the most promising way to meet the real-time
processing constraints for 3D MR image denoising.

Acknowledgements Thanks to Dani Ushizima, Alex Cunha,
and Owen Carmichael for their comments and input on earlier
versions of this study, and to D. Louis Collins for following
up with us on problems accessing the BrainWeb database.

This work was supported by the Director, Office of Sci-
ence, Office and Advanced Scientific Computing Research,
of the U.S. Department of Energy under Contract No. DE-
AC02-05CH11231. This work was conducted using computa-
tional resources and services at the Center for Computation
and Visualization, Brown University.

Data used for this study were downloaded from the Biomed-
ical Informatics Research Network (BIRN) Data Repository
(http://www.nbirn.net/bdr), supported by grants to the BIRN
Coordinating Center (U24-RR019701), Function BIRN (U24-
RR021992), Morphometry BIRN (U24-RR021382), and Mouse
BIRN (U24-RR021760) Testbeds funded by the National Cen-
ter for Research Resources at the National Institutes of Health,
U.S.A.

References

Bethel EW (2009) High Performance, Three-Dimensional
Bilateral Filtering. Tech. Rep. LBNL-1601E, Lawrence
Berkeley National Laboratory

Buades A, Coll B, Morel JM (2005) A non-local algorithm
for image denoising. In: Proceedings of the 2005 IEEE
Computer Society Conference on Computer Vision and
Pattern Recognition (CVPR’05) - Volume 2, IEEE Com-
puter Society, Washington, DC, USA, CVPR ’05, p 6065,
DOI 10.1109/CVPR.2005.38, URL http://dx.doi.org/
10.1109/CVPR.2005.38

Chen J, Paris S, Durand F (2007) Real-time Edge-aware
Image Processing with the Bilateral Grid. In: SIG-
GRAPH ’07: ACM SIGGRAPH 2007 papers, ACM, New

12

York, NY, USA, p 103, DOI http://doi.acm.org/10.1145/
1275808.1276506

Cocosco CA, Kollokian V, Kwan RKS, Pike GB, Evans AC
(1997) BrainWeb: Online Interface to a 3D MRI Simu-
lated Brain Database. NeuroImage 5:425

Coupe P, Yger P, Prima S, Hellier P, Kervrann C, Baril-
lot C (2008) An optimized blockwise nonlocal means de-
noising filter for 3-d magnetic resonance images. IEEE
Transactions on Medical Imaging 27(4):425 –441, DOI
10.1109/TMI.2007.906087

de la Cruz R, Araya-Polo M (2011) Towards a Multi-level
Cache Performance Model for 3D Stencil Computation.
In: Procedia Computer Science, Proceedings of the Inter-
national Conference on Computational Sciences, ICCS,
vol 4, pp 2145–2155

Darbon J, Cunha A, Chan T, Osher S, Jensen G (2008) Fast
nonlocal filtering applied to electron cryomicroscopy. In:
Proceedings of the 5th IEEE International Symposium on
Biomedical Imaging: From Nano to Macro (ISBI’08), pp
1331 –1334, DOI 10.1109/ISBI.2008.4541250

Datta K, Williams S, Volkov V, Carter J, Oliker L, Shalf
J, Yelick K (2009) Auto-tuning the 27-point Stencil for
Multicore. In: 4th International Workshop on Automatic
Performance Tuning (iWAPT)

Eklund A, Andersson M, Knutsson H (2011) True 4D image
denoising on the GPU. International Journal of Biomedi-
cal Imaging 2011, DOI 10.1155/2011/952819, URL http:
//dx.doi.org/10.1155/2011/952819

Ganapathi A, Datta K, Fox A, Patterson D (2009) A case
for machine learning to optimize multicore performance.
In: Proceedings of the 1st USENIX Conference on Hot
Topics in Parallelism (HotPar ’09), USENIX Association,
Berkeley, CA, USA, HotPar’09, p 11, URL http://dl.
acm.org/citation.cfm?id=1855591.1855592

Garcia C, Botella G, Ayuso F, Prieto M, Tirado F (2013)
Multi-gpu based on multicriteria optimization for mo-
tion estimation system. EURASIP Journal on Advances
in Signal Processing 2013(1):23

Gerig G, Kübler O, Kikinis R, Jolesz FA (1992) Nonlinear
Anisotropic Filtering of MRI Data. IEE Transactions on
Medical Imaging 11(2):221–232

Hamarneh G, Hradsky J (2007) Bilateral Filtering of Dif-
fusion Tensor Magnetic Resonance Images. IEEE Trans-
actions on Image Processing 16(10):2463–2475, DOI
10.1109/TIP.2007.904964

Hollingsworth J, Tiwari A (2010) End-to-end Auto-tuning
with Active Harmony. In: Bailey DH, Lucas RF, Williams
SW (eds) Performance Tuning of Scientific Applications,
CRC Press

Howison M (2010) Comparing GPU implementations of bi-
lateral and anisotropic diffusion filters for 3D biomedical
datasets. Chicago, IL, USA, URL http://vis.lbl.gov/
Publications/2010/LBNL-3425E.pdf

Ibanez L, Schroeder W, Ng L, Cates J (2003) The ITK Soft-
ware Guide: The Insight Segmentation and Registration
Toolkit. Kitware

Kamil S, Chan C, Oliker L, Shalf J, Williams S (2010)
An Auto-tuning framework for Parallel Multicore Stencil
Computations. In: International Parallel & Distributed
Processing Symposium (IPDPS)

Kwan R, Evans A, Pike G (1999) MRI simulation-based
evaluation of image-processing and classification meth-
ods. IEEE Transactions on Medical Imaging 18(11):1085
–1097, DOI 10.1109/42.816072

Landman BA, Huang AJ, Gifford A, Vikram DS, Lim IAL,
Farrell JA, Bogovic JA, Hua J, Chen M, Jarso S, et al
(2011) Multi-parametric neuroimaging reproducibility: A
3-t resource study. NeuroImage 54(4):28542866

Magni A, Grewe D, Johnson N (2013) Input-aware auto-
tuning for directive-based gpu programming. In: Proceed-

ings of the 6th Workshop on General Purpose Proces-
sor Using Graphics Processing Units, ACM, GPGPU-6,
p 6675

Mahmoudi M, Sapiro G (2005) Fast image and video de-
noising via nonlocal means of similar neighborhoods.
IEEE Signal Processing Letters 12(12):839 – 842, DOI
10.1109/LSP.2005.859509

Manjón JV, Carbonell-Caballero J, Lull JJ, Garca-Mart
G, Mart-Bonmat L, Robles M (2008) MRI denois-
ing using non-local means. Medical Image Analysis
12(4):514–523, DOI 10.1016/j.media.2008.02.004, URL
http://www.sciencedirect.com/science/article/
pii/S1361841508000248

McConnel Brain Imaging Center MNI (1997) http://www.
bic.mni.mcgill.ca/brainweb/

NVIDIA Corporation (2012) CUDA C Program-
ming Guide. URL http://docs.nvidia.com/cuda/
cuda-c-programming-guide/index.html

Perona P, Malik J (1990) Scale-Space and Edge Detection Us-
ing Anisotropic Diffusion. IEEE Transactions on Pattern
Analysis and Machine Intelligence 12(7):629–639

Rivera G, Tseng C (2000) Tiling optimizations for 3D scien-
tific computations. In: SC ’00: Proceedings of the 2000
ACM/IEEE conference on Supercomputing

Ryoo S, Rodrigues CI, Stone SS, Baghsorkhi SS, Ueng SZ,
Stratton JA, mei W Hwu W (2008) Program optimiza-
tion space pruning for a multithreaded GPU. In: CGO
’08: Proceedings of the Sixth Annual IEEE/ACM Inter-
national Symposium on Code Generation and Optimiza-
tion, pp 195–204

Seymour K, You H, Dongarra J (2008) A comparison of
search heuristics for empirical code optimization. In: 2008
IEEE International Conference on Cluster Computing, pp
421 –429, DOI 10.1109/CLUSTR.2008.4663803

Stone SS, Haldar JP, Tsao SC, Hwu WmW, Sutton BP, Liang
ZP (2008) Accelerating advanced mri reconstructions on
gpus. J Parallel Distrib Comput 68(10):1307–1318, DOI
http://dx.doi.org/10.1016/j.jpdc.2008.05.013

Tomasi C, Manduchi R (1998) Bilateral Filtering for Gray
and Color Images. In: ICCV ’98: Proceedings of the Sixth
International Conference on Computer Vision, IEEE
Computer Society, Washington, DC, USA, p 839

Wang Z, Bovik A, Sheikh H, Simoncelli E (2004) Image qual-
ity assessment: from error visibility to structural similar-
ity. IEEE Transactions on Image Processing 13(4):600612

Weickert J, Benhamouda B (1997) Why the Perona-Malik
filter works. Tech. Rep. DKIU-TR-97/22, Department of
Computer Science, University of Copenhagen

Williams S, Datta K, Oliker L, Carter J, Shalf J, Yelick K
(2010) Auto-tuning Memory-Intensive Kernels for Multi-
core. In: Bailey DH, Lucas RF, Williams SW (eds) Per-
formance Tuning of Scientific Applications, CRC Press

Zheng Z, Xu W, Mueller K (2011) Performance tuning for
CUDA-accelerated neighborhood denoising filters. In: 3rd
Workshop on High-Performance Image Reconstruction
(HPIR), Potsdam, Germany, p 5255

